Strongly coupled gauge theories: In and out of the conformal window Anna Hasenfratz University of Colorado Boulder > BNL Lunch Seminar Oct 24, 2013 In collaboration with A. Cheng, G. Petropoulos and D. Schaich ArXiv:1301.1355,1310.1124 ## Outline: After the Higgs discovery: - could the SMS be strongly coupled composite? - yes, until proven otherwise #### **Outline:** ## After the Higgs discovery: - could the SMS be strongly coupled composite? - yes, until proven otherwise - why is it so hard for lattice simulations? - this is not QCD! #### **Outline:** ## After the Higgs discovery: - could the SMS be strongly coupled composite? - yes, until proven otherwise - why is it so hard for lattice simulations? - this is not QCD! - 2 methods & some results - spectral density of the Dirac operator eigenmodes - finite size scaling with corrections ## July 4th 2012: Higgs boson "discovered" 0++ scalar at 126 GeV : Standard Model like - no sign of new TeV-scale physics! #### Oct 8 2013 # For Nobel, They Can Thank the 'God Particle' Higgs and Englert Are Awarded Nobel Prize in Physics ## July 4th 2012: Higgs boson "discovered" 0++ scalar at 126 GeV : Standard Model like - no sign of new TeV-scale physics! - Elementary scalar? and no new physics : give up naturalness and deal with fine tuning - SUSY? SMS is uncomfortably heavy - Composite? SMS is uncomfortably light find strongly interacting model with light scalar ## Composite Higgs: Strongly coupled meson-like fermion state - Scaled-up QCD (technicolor) models are out (were ruled out decades ago)! - EW measurements are violated (mainly because g² runs too fast) - Walking TC models: If exist, can solve most these problems; - Do they have a light Standard Model like scalar? Could be: - dilaton of spontaneously broken conformal symmetry - pseudo-Goldstone of expanded flavor symmetry $SU(N_{color} \ge 2)$ gauge fields + N_{flavor} fermions in some representation N_{color} ## Roadmap for the conformal window Needs non-perturbative verification! # Roadmap for the conformal window Cartoon Needs non-perturbative verification! ## Roadmap for the conformal window Cartoon Shaded: conformal Below: confining Above: IR free Dotted lines: 2-loop PT fermion representation: **Fundamental Adjoint** 2Symmetric Appelguist, Lane, Mahanta, Wijewardhana, Cohen, Georgi, Yamawaki, Shrock, Dietrich, Sannino, Tuominen Needs non-perturbative verification! ## In this talk: $N_f = 4$, 8 and 12 fundamental fermions ### In this talk: $N_f = 4$, 8 and 12 fundamental fermions Concentrate on $N_f = 12$: controversial system near the conformal boundary $N_f=8$: most likely chirally broken but could be walking #### Questions to answer: - •Is the system conformal or chirally broken (and walking)? - •Is there a light scalar? - •Is the S parameter small? What is the anomalous mass dim.? • Simple enough cannot be much harder than QCD It is surprisingly difficult to distinguish conformal, walking, and chirally broken systems on the lattice ## Fixed point structure of a chirally broken system m=0 critical surface: one fixed point #### Perturbative FP g=0,m=0 : 2 relevant directions **g**1 ## Fixed point structure of a chirally broken system m=0 critical surface: one fixed point #### Perturbative FP g=0,m=0 : 2 relevant directions Continuum limit: Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory **g**₁ m=0 critical surface: **two fixed points** #### Perturbative FP g=0,m=0 : 2 relevant directions #### **IRFP** g=g_{IRFP},m=0 : 1 relevant direction m=0 critical surface: two fixed points #### Perturbative FP g=0,m=0 : 2 relevant directions #### **IRFP** **g**₁ g=g_{IRFP},m=0 : 1 relevant direction Two possible continuum limits: - 1. Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory - 2. Tune only m \rightarrow 0 : renormalized $g^2 = g^2_{IRFP}$ m=0 critical surface: two fixed points #### Perturbative FP g=0,m=0 : 2 relevant directions #### **IRFP** g=g_{IRFP},m=0 : 1 relevant direction **g**1 Two possible continuum limits: - 1. Tune bare $g^2 \rightarrow 0$ and $m \rightarrow 0$: renormalized g^2 anywhere on renormalized trajectory - 2. Tune only m \rightarrow 0 : renormalized $g^2 = g^2_{IRFP}$ m=0 critical surface: two fixed points #### Perturbative FP g=0,m=0 : 2 relevant directions #### **IRFP** **g**₁ $g=g_{IRFP}, m=0:1$ relevant direction Two possible continuum limits: - 1. Tune bare $g^2 \to 0$ and $m \to 0$: renormalized g^2 anywhere on renormalized trajectory - 2. Tune only m \rightarrow 0 : renormalized $g^2 = g^2_{IRFP}$ # It is surprisingly difficult to distinguish conformal, walking, and chirally broken systems on the lattice - they look very similar along the RT - if the gauge coupling "walks": g is nearly marginal!(non-QCD like) #### Discuss 2 methods: 1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions 2. Finite size scaling analysis Shows the effect of the near marginal gauge coupling #### Discuss 2 methods: 1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions 2. Finite size scaling analysis Shows the effect of the near marginal gauge coupling #### Discuss 2 methods: 1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions m→0 L→∞ 2. Finite size scaling analysis Shows the effect of the near marginal gauge coupling m,L finite #### Discuss 2 methods: 1. Study of Dirac eigenmodes and spectral density $\rho(\lambda)$ Distinguishes weak & strong coupling regions 2. Finite size scaling analysis Shows the effect of the near marginal gauge coupling m,L finite Mostly N_f=12 flavor to test the methods and understand/resolve existing controversies. ## Dirac operator eigenvalue spectrum and spectral density Chirally broken systems: $\rho(0) = \Sigma/\pi$ Conformal systems are chirally symmetric: $\rho(0)=0$ critical behavior: spectral density scales as $\rho(\lambda) \propto \lambda^{\alpha}$, $\lambda \approx 0$ The **mode number** $v(\lambda) = V \int_{-\lambda}^{\lambda} \rho(\omega) d\omega \propto V \lambda^{\alpha+1}$ is RG invariant (Giusti, Luscher) i.e. unchanged under scale change s: $V \rightarrow s^4 V$, $\lambda \rightarrow \lambda / s^{1+\gamma}$, $v \rightarrow v \Box \Box$ $\rightarrow \alpha$ is related to the anomalous dimension (Zwicky, Del Debbio; Patella) $$\frac{4}{1+\alpha} = y_m = 1 + \gamma_m$$ ## Scaling of the Dirac eigenvalue spectrum - conformal system Eigenvalue density scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$ RG invariance implies $$\frac{4}{1+\alpha} = y_m = 1+\gamma_m$$ in the infrared ## Scaling of the Dirac eigenvalue spectrum - conformal system Eigenvalue density scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$ RG invariance implies $$\frac{4}{1+\alpha} = y_m = 1+\gamma_m$$ in the infrared **IR** – small λ region: $$\gamma_m(\lambda \to 0) = \gamma_m^*$$ predicts the universal anomalous dimension at the IRFP **UV** – large λ =O(1) region: if governed by the asymptotically free perturbative FP $$\gamma_m(\lambda = \mathcal{O}(1)) = \gamma_0 g^2 + \dots$$ In between: scale dependent effective γ_m ## Scaling of the Dirac eigenvalue spectrum - conformal system Eigenvalue density scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$ RG invariance implies $$\frac{4}{1+\alpha} = y_m = 1+\gamma_m$$ in the infrared #### Scaling of the Dirac eigenvalue spectrum - conformal system Eigenvalue density scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$ RG invariance implies $$\frac{4}{1+\alpha} = y_m = 1+\gamma_m$$ in the infrared #### Scaling of the Dirac eigenvalue spectrum - conformal system Eigenvalue density scales as $\rho(\lambda) \propto \lambda^{\alpha(\lambda)}$ RG invariance implies $$\frac{4}{1+\alpha} = y_m = 1+\gamma_m$$ in the infrared #### Scaling of the Dirac eigenvalue spectrum - chirally broken system The picture is still valid in the UV and moderate energy range #### Scaling of the Dirac eigenvalue spectrum - chirally broken system The picture is still valid in the UV and moderate energy range #### Scaling of the Dirac eigenvalue spectrum - chirally broken system The picture is still valid in the UV and moderate energy range ## Dirac operator eigenvalue spectrum and spectral density #### Goal: - calculate $v(\lambda)$ stochastically - fit $v(\lambda) \propto \lambda^{\alpha}$ in small λ ranges - extract the scale dependent $\gamma_m(\lambda)$ This should be done in the chiral m=0 infinite volume L→∞ limit: finite mass, volume introduces only small λ transient effects ## Results: $N_f = 4$ Broken chiral symmetry in IR, asymptotic freedom in UV Lattice spacing from Wilson flow: $$a_{6.4} / a_{7.4} = 2.84(3)$$ $a_{6.6} / a_{7.4} = 2.20(5)$ $a_{7.0} / a_{7.4} = 1.45(3)$ $$a_{8.0} / a_{7.4} = 0.60(4)$$ # Rescaling: $N_f = 4$ The dimension of λ is carried by the lattice spacing: $\lambda_{lat} = \lambda_{pa}$ Rescale to a common physical scale: $$\lambda_{\beta} \to \lambda_{\beta} \left(\frac{a_{7.4}}{a_{\beta}} \right)^{1+\gamma_{m}(\lambda_{\beta})}$$ Lattice spacing from Wilson flow: $$a_{6.4} / a_{7.4} = 2.84(3)$$ $a_{6.6} / a_{7.4} = 2.20(5)$ $a_{7.0} / a_{7.4} = 1.45(3)$ $a_{8.0} / a_{7.4} = 0.60(4)$ # Rescaling: $N_f = 4$ The dimension of λ is carried by the lattice spacing: $\lambda_{lat} = \lambda_{pa}$ Rescale to a common physical scale: $$\lambda_{\beta} \to \lambda_{\beta} \left(\frac{a_{7.4}}{a_{\beta}} \right)^{1+\gamma_{m}(\lambda_{\beta})}$$ Lattice spacing from Wilson flow: $$a_{6.4} / a_{7.4} = 2.84(3)$$ $a_{6.6} / a_{7.4} = 2.20(5)$ $a_{7.0} / a_{7.4} = 1.45(3)$ $a_{8.0} / a_{7.4} = 0.60(4)$ # Rescaling: N_f =4 The dimension of λ is carried by the lattice spacing: $\lambda_{lat} = \lambda_{pa}$ Rescale to a common physical scale: Universal curve covering almost 2 orders of magnitude in energy! Perturbative: functional form from 1-loop PT, relative scale is fitted Most of these data were obtained on deconfined (small) volumes at m=0! Results: $N_f = 12$ Controversial system: SD predicts it is right at the conformal boundary early studies suggested it is conformal then chirally broken ... then conformal The model could be phenomenologically unimportant, but it is a great model to test methods / understanding! # Spectral density results: $N_f = 12$ β =3.0, 4.0, 5.0, 6.0 - •There is no sign of asymptotic freedom behavior for β <6.0, $\gamma_{\rm m}$ grows towards UV - •Not possible to rescale different β's to a single universal curve Looks as if there was an IRFP between β =5.0 -6.0 # Rescaling N_f=4 vs N_f=12 N_f =4 : smaller β matches to the left (forward flow) N_f =12 : no consistent rescaling but even an approximate one matches to the right of β <6.0 # Rescaling N_f=4 vs N_f=12 Spectral density appears to be a very sensitive test to identify a conformal system #### Anomalous dimension, $N_f = 8$ Expected to be chirally broken - looks like walking! - -No asymptotic free scaling-No rescale of different couplings - -When $\gamma_m \sim 1$ in the UV, the S⁴b phase develops ## Dirac operator eigenvalue spectrum and spectral density #### Unique & promising method! - Can distinguish strong and weak coupling region of conformal /chirally broken systems #### **Predictions:** N_f=4 : scaling & anomalous dimension N_f=12: looks conformal N_f=8 : could be walking with large anomalous dimension! # II: Finite size scaling #### **HISTORY:** Several groups attempted finite size scaling for N_f=12 curve collapse is possible but the predicted scaling exponent is strongly operator dependent #### **CONCLUSION 1:** No consistent finite size scaling suggests that the system is not conformal #### **CONCLUSION 2:** Problems are due to the near-marginal gauge coupling. Take this into account and things become consistent # Finite size scaling Consider a FP with one relevant operator $m \approx 0$ with scaling dimension $y_m > 0$ and irrelevant operators g_i with scaling dimensions $y_i < 0$. Renormalization group arguments in volume L³ predict scaling of physical masses as $$M_H L = f(Lm^{1/y_m}, g_i m^{-y_i/y_m})$$ as $m \approx 0$ as $$m \to 0$$, $L \to \infty$: $g_i m^{-y_i/y_0} \to 0$ $$M_H L = f(x), \quad x = L m^{1/y_m}$$ -tune ym until different volumes "collapse" ## Finite size scaling with nHYP action, N_f=12 - β = 4.0 (meson spectrum matches LHC β =2.2 closely) - good curve collapse for larger $x = Lm^{1/y_m}$ - inconsistent exponents (See results from LHC, KMI as well) ## Finite size scaling with nHYP action, N_f=12 - β = 4.0 (meson spectrum matches LHC β =2.2 closely) - good curve collapse for larger $x = Lm^{1/y_m}$ - inconsistent exponents (See results from LHC, KMI as well) - No good curve collapse at small x - -- cannot be fixed by changing the exponent ## Finite size scaling with nHYP action, N_f=12 - β = 4.0 (meson spectrum matches LHC β =2.2 closely) - good curve collapse for larger $x = Lm^{1/y_m}$ - inconsistent exponents (See results from LHC, KMI as well) - No good curve collapse at small x - -- cannot be fixed by changing the exponent $$M_{\pi}: \quad \beta_F = 2.8, \gamma_m = 0.78, c_0 = 0$$ $M_{\pi}: y_{m}=1.78(4) \quad (\beta=2.8)$ Gets worse at strong coupling! (β=2.8) ## Scaling exponents "Curve collapse" for pseudoscalar, vector and f_{π} : $$\beta$$ =2.8 — 6.0 Volumes: 12³, 16³, 20³, 24³, 32³ $N_T = 2 N_S$ masses: 0.005 — 0.12 such that x = 0.2 - 5 25 - 35 data points at each β M_{π} , and M_{\vee} settle at a common value at $\beta \approx 6.0$ (f_{π} is still off) # Scaling exponents "Curve collapse" for pseudoscalar, vector and f_{π} : $$\beta$$ =2.8 — 6.0 Volumes: 12³, 16³, 20³, 24³, 32³ $N_T = 2 N_S$ masses: 0.005 — 0.12 such that x=0.2-5 25 - 35 data points at each β #### Possible explanations: - 1) N_f=12 is not conformal - 2) N_f=12 is conformal but finite size scaling is strongly affected by an irrelevant operator # Scaling exponents "Curve collapse" for pseudoscalar, vector and f_{π} : $$\beta$$ =2.8 — 6.0 Volumes: 12³, 16³, 20³, 24³, 32³ $N_T = 2 N_S$ masses: 0.005 — 0.12 such that x=0.2-5 25 - 35 data points at each β #### Possible explanations: - 1) N_f=12 is not conformal - 2) N_f=12 is conformal but finite size scaling is strongly affected by an irrelevant operator # Finite size scaling with a near-marginal operator Consider a FP with one relevant operator $m \approx 0$ with scaling dimension $y_m > 0$ and irrelevant operators g_i with scaling dimensions $y_i < 0$ g_0 (near) marginal, $y_0 \le 0$ Renormalization group arguments in volume L³ predict $$M_H L = f(Lm^{1/y_m}, g_i m^{-y_i/y_m})$$ as $m \approx 0$ as $$m \to 0$$, $L \to \infty$: $g_i m^{-y_i/y_0} \to 0$ $$g_0 \to g_0 m^{\omega}, \quad \omega = -y_0/y_m \gtrsim 0$$ $$M_H L = f(x, g_0 m^{\omega}), \quad x = L m^{1/y_m}$$ The scaling function depends on two variables now! ## Corrections to finite size scaling Physical masses scale as $$\mathbf{M}_H = L^{-1} f(x, g_0 m^{\omega}), \quad \omega = -y_0 / y_m$$ $f(x, g_0 m^{\omega})$ is analytic both in x and g_0 . If the g₀m^ω corrections are small, expand $$LM_H = F(x)(1 + g_0 m^{\omega} G(x))$$ - -F(0), G(0) are finite constants - as $L \to \infty$: $M_H \propto m^{1/y_m} \to F(x) \propto x$, G(x) = const Approximate $$G(x) = c$$ (should be checked) $\rightarrow \frac{LM_H}{1+c g_0 m^{\omega}} = F(x)$ Need minimization in y_m, ω, and cg₀ ## Corrections to finite size scaling Physical masses scale as $$\mathbf{M}_H = L^{-1} f(x, g_0 m^{\omega}), \quad \omega = -y_0 / y_m$$ $f(x, g_0 m^{\omega})$ is analytic both in x and g_0 . If the g₀m^ω corrections are small, expand $$LM_H = F(x)(1 + g_0 m^{\omega} G(x))$$ - -F(0), G(0) are finite constants - as $L \to \infty$: $M_H \propto m^{1/y_m} \to F(x) \propto x$, G(x) = const Approximate $$G(x) = c$$ (should be checked) $\rightarrow LM_H = F(x)$ Need minimization in y_m , ω , and cg_0 # Scaling test with corrections Curve collapse: 2 parameter, y_m and c_0 , y_0 =-0.3 fixed Fit: quadratic polynomial at $x < x_0$, linear at $x > x_0$, separation point x_0 free (here $x_0 = 1.36$) - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ y_m=1.212, c₀ = -0.6; $\chi^2/\text{dof} = 4.5$ - Cut small x<1.2 points : $y_m=1.234$, $c_0 = -0.6$; $\chi^2/\text{dof} = 2.9$ - Cut large x>1.3 points : $y_m=1.184$, $c_0 = -0.7$; $\chi^2/dof = 0.7$ # Scaling test with corrections Curve collapse: 2 parameter, y_m and c_0 , y_0 =-0.3 fixed Fit: quadratic polynomial at $x < x_0$, linear at $x > x_0$, separation point x_0 free (here $x_0 = 1.36$) - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ y_m=1.212, c₀ = -0.6; $\chi^2/\text{dof} = 4.5$ - Cut small x<1.2 points : $y_m=1.234$, $c_0 = -0.6$; $\chi^2/\text{dof} = 2.9$ - Cut large x>1.3 points : $y_m=1.184$, $c_0 = -0.7$; $\chi^2/dof = 0.7$ ## Scaling exponent with corrections Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points - good curve collapse - consistent scaling exponent γ_m =0.20(2) - but need more data to constrain the 2 parameter fits ## Scaling exponent with corrections Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points - good curve collapse - consistent scaling exponent γ_m =0.20(2) - but need more data to constrain the 2 parameter fits # Scaling exponent with corrections Include all data $M_{\pi} L$, $M_{V} L$, $f_{\pi} L$ points How to make this stronger: - -Combined fit to all beta (same scaling function F(x)!) - -Combined fit to all operators (same exponents) Preliminary results very promising! # Summary Strongly coupled gauge-fermion systems are exciting - non-perturbative dynamics with unusual properties - can offer BSM with composite Higgs Near the conformal window they (could) - walk: slowly changing gauge coupling - large anomalous dimension - dilaton: light scalar! (in progress) Lattice studies are only starting to understand these systems ## The exponent y₀ Is y₀ ever small? #### Perturbatively: $-N_f=16: y_0 = -0.002 (2 loop)$ $-N_f=12: y_0=-0.36-0.28 (2 loop /4-loop MS)$ Schroedinger funct. studies suggest small y_0 in several models MCRG for N_f =12 predicts $y_0 \approx -0.12(4)$ Slope of the bare step scaling function predicts y₀ G. Petropoulos talk, 15:40 today Curve collapse: 2 parameter, y_m and c_0 , y_0 =-0.3 fixed Fit: quadratic polynomial at $x < x_0$, linear at $x > x_0$, separation point x_0 free (here $x_0 = 1.36$) - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ y_m=1.212, c₀ = -0.6; $\chi^2/\text{dof} = 4.5$ - Cut small x<1.2 points : $y_m=1.234$, $c_0 = -0.6$; $\chi^2/\text{dof} = 2.9$ - Cut large x>1.3 points : $y_m=1.184$, $c_0 = -0.7$; $\chi^2/dof = 0.7$ Curve collapse: 2 parameter, y_m and c_0 , y_0 =-0.3 fixed Fit: quadratic polynomial at $x < x_0$, linear at $x > x_0$, separation point x_0 free (here $x_0 = 1.36$) - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ y_m=1.212, c₀ = -0.6; $\chi^2/\text{dof} = 4.5$ - Cut small x<1.2 points : $y_m=1.234$, $c_0 = -0.6$; $\chi^2/\text{dof} = 2.9$ - Cut large x>1.3 points : $y_m=1.184$, $c_0 = -0.7$; $\chi^2/dof = 0.7$ β = 4.0, M_{π} , M_{V} and f_{π} (2 parameter curve collapse, y_{0} =-0.3 fixed) | | Mπ | Μρ | fπ | |-------------------------------------|-----------|-----------|----------| | Уm | 1.212(20) | 1.184(25) | 1.24(2) | | C ₀ | -0.6 | -0.3 | 1.6 | | χ²/dof | 4.5 | 5.1 | 8.5 | | y _m
c ₀ =0 | 1.406(4) | 1.254(5) | 1.084(5) | - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ - y_m=1.21 consistent for all three observables β = 4.0, M_{π} , M_{V} and f_{π} (2 parameter curve collapse, y_{0} =-0.3 fixed) - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ - y_m=1.21 consistent for all three observables β = 4.0, M_{π} , M_{V} and f_{π} (2 parameter curve collapse, y_{0} =-0.3 fixed) - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ - y_m=1.21 consistent for all three observables β = 4.0, M_{π} , M_{V} and f_{π} (2 parameter curve collapse, y_{0} =-0.3 fixed) | | Mπ | Mρ | f_{π} | |-------------------------------------|-----------|-----------|-----------| | y m | 1.212(20) | 1.184(25) | 1.24(2) | | C 0 | -0.6 | -0.3 | 1.6 | | χ²/dof | 4.5 | 5.1 | 8.5 | | y _m
c ₀ =0 | 1.406(4) | 1.254(5) | 1.084(5) | - Consistent curve collapse both at small and large $x = Lm^{1/y_m}$ - y_m=1.21 consistent for all three observables ### Meson ratios with LHC and KMI data #### Numerical test ### N_f=12 flavors nHYP smeared staggered fermions ``` – gauge coupling: cover a wide range \beta= 2.8, 4.0, 5.0, 6.0, (3.5, 4.5, 5.5 in progress) (Note: \beta= 2.8 is near S4b - strongest poss. \beta= 4.0 is very close to LHC \beta=2.2 \beta= 5.5 is the IRFP based on MCRG and eigenmodes) ``` ``` - volumes : 12^3x24, 16^3x32, 20^3x40, 24^3x48, 32^3x64 25-35 points ``` - fermion mass : m=0.01 0.15 ($x = m^{1/y} L = 1 6$) - operators: pseudoscalar, vector, f_{π} # Fitting forms M_{π} and M_{ρ} : fit quadratic at small x, linear at large. # Fitting forms f_{π} : 4th order polynomial fit ### Comparing different actions LHC: 2 stout smeared fermions, Symanzik gauge KMI: HISQ fermions without Naik, Symanzik gauge Boulder: nHYP fermions, fundamental+adjoint plaquette gauge Table: γ_m from fits with leading exponent only | | 6/g ² | $\gamma_m (M_{\pi})$ | $\gamma_{\rm m} ({\rm M}_{\rm p})$ | $\gamma_{\rm m}$ (f _{π}) | |---------|------------------|----------------------|-------------------------------------|---| | Boulder | 1.4 | 0.76 | 0.26 | 0.15 | | Boulder | 2.0 | 0.41 | 0.25 | 0.11 | | LHC | 2.2 | 0.39 | 0.30 | 0.21 | | Boulder | 2.5 | 0.29 | 0.24 | 0.06 | | KMI | 3.7 | 0.43 | 0.46 | 0.52 | | KMI | 4.0 | 0.41 | 0.46 | 0.58 | Lattice artifacts are not universal! ### Comparing different actions LHC: 2 stout smeared fermions, Symanzik gauge KMI: HISQ fermions without Naik, Symanzik gauge Boulder: nHYP fermions, fundamental+adjoint plaquette gauge Table: γ_m from fits with leading exponent only | | 6/g ² | $\gamma_m (M_{\pi})$ | $\gamma_{\rm m} ({\rm M}_{\rm p})$ | $\gamma_{\rm m}$ (f _{π}) | |---------|------------------|----------------------|-------------------------------------|---| | Boulder | 1.4 | 0.76 | 0.26 | 0.15 | | Boulder | 2.0 | 0.41 | 0.25 | 0.11 | | LHC | 2.2 | 0.39 | 0.30 | 0.21 | | Boulder | 2.5 | 0.29 | 0.24 | 0.06 | | KMI | 3.7 | 0.43 | 0.46 | 0.52 | | KMI | 4.0 | 0.41 | 0.46 | 0.58 | Lattice artifacts are not universal!